FLIPL is critical for aerobic glycolysis in hepatocellular carcinoma
نویسندگان
چکیده
BACKGROUND Tumor cells use aerobic glycolysis to rapidly generate ATP and growth substrate which expenses a large amount of glucose. However, how tumor cells take in enough glucose from the tumor microenvironment of insufficient blood supply remains poorly understood. The cellular FLICE-like inhibitory protein (FLIP), a cell apoptosis inhibiting molecule, is highly expressed in hepatocellular carcinoma (HCC) and is implicated in HCC development. METHODS The effects of FLIPL (the long form of FLIP) on aerobic glycolysis and glucose uptake were assessed in HCC cells and xenograft tumors. The correlations between FLIPL expression and sodium/glucose cotransporter 1 (SGLT1) expression in clinical HCC tissues were analyzed. The consequences of FLIPL-induced regulation of SGLT1 at the transcription and translation levels and the interaction between FLIPL and SGLT1 were examined. FLIPL-mediated tolerance upon glucose limitation and its mechanism were detected. RESULTS We report a novel role for FLIPL in promoting the aerobic glycolysis of HCC cells. FLIPL overexpression induced a significant increase in cell aerobic glycolysis indexes including glucose uptake, glucose consumption, and lactate production. FLIPL co-localized and interacted with SGLT1, a major active glucose transporter in HCC cells. FLIPL increased the stability of SGLT1 protein by inhibiting its ubiquitination and degradation. The expression level of FLIPL was positively correlated with the expression level of SGLT1 in 79 HCC tissues from surgical operation. Furthermore, FLIPL increased cell tolerance ability and decreased cell apoptosis to low glucose by regulating SGLT1. CONCLUSIONS Our results indicate that FLIPL plays an essential role in HCC aerobic glycolysis and that SGLT1 is required for FLIPL-modulated tumor proliferation under low glucose conditions. Targeting the actions of FLIPL in cell glucose-dependent aerobic glycolysis may provide an attractive strategy for therapeutic intervention in HCC.
منابع مشابه
By reducing hexokinase 2, resveratrol induces apoptosis in HCC cells addicted to aerobic glycolysis and inhibits tumor growth in mice
Cancer cells exhibit an altered metabolic phenotype known as the aerobic glycolysis. The expression of HK2 changes the metabolic phenotype of cells to support cancerous growth. In the present study, we investigated the inhibitory effect of resveratrol on HK2 expression and hepatocellular carcinoma (HCC) cell glycolysis. Aerobic glycolysis was observed in four HCC cell lines compared to the norm...
متن کاملRas-related associated with diabetes gene acts as a suppressor and inhibits Warburg effect in hepatocellular carcinoma
Hepatocellular carcinoma (HCC) is rapidly becoming one of the most prevalent cancers worldwide and is a prominent source of mortality. Ras-related associated with diabetes (RRAD), one of the first members of the 35-39 kDa class of novel Ras-related GTPases, is linked to several types of cancer, although its function in HCC remains unclear. In this study, we observed that RRAD was downregulated ...
متن کاملPARP14 promotes the Warburg effect in hepatocellular carcinoma by inhibiting JNK1-dependent PKM2 phosphorylation and activation
Most tumour cells use aerobic glycolysis (the Warburg effect) to support anabolic growth and evade apoptosis. Intriguingly, the molecular mechanisms that link the Warburg effect with the suppression of apoptosis are not well understood. In this study, using loss-of-function studies in vitro and in vivo, we show that the anti-apoptotic protein poly(ADP-ribose) polymerase (PARP)14 promotes aerobi...
متن کاملIn vitro and in vivo study of epigallocatechin-3-gallate-induced apoptosis in aerobic glycolytic hepatocellular carcinoma cells involving inhibition of phosphofructokinase activity
Glycolysis, as an altered cancer cell-intrinsic metabolism, is an essential hallmark of cancer. Phosphofructokinase (PFK) is a metabolic sensor in the glycolytic pathway, and restricting the substrate availability for this enzyme has been researched extensively as a target for chemotherapy. In the present study, we investigated that the effects of epigallocatechin-3-gallate (EGCG), an active co...
متن کاملPim-2 Modulates Aerobic Glycolysis and Energy Production during the Development of Colorectal Tumors
Tumor cells have higher rates of glucose uptake and aerobic glycolysis to meet energy demands for proliferation and metastasis. The characteristics of increased glucose uptake, accompanied with aerobic glycolysis, has been exploited for the diagnosis of cancers. Although much progress has been made, the mechanisms regulating tumor aerobic glycolysis and energy production are still not fully und...
متن کامل